N1—C2 N1—C6 N1—C1	1.392 (14) 1.43 (2) 1.462 (14)	C4C5 C5C6	1.357 (15) 1.43 (2)
NI-CI N7-Au-P C10-P-C16 C10-P-C17 C16-P-C17 C10-P-Au C16-P-Au C17-P-Au C2-N1-C6 C2-N1-C1 C6-N1-C1	1.462 (14) 177.5 (2) 105.1 (5) 106.3 (6) 102.2 (6) 112.8 (4) 115.9 (4) 113.4 (4) 127.1 (9) 115.2 (10) 117.6 (9)	C5N7Au C8N9C4 O2C2N3 O2C2N1 N3C2N1 C5C4N3 C5C4N9 N3C4N9 C4C5N7 C4C5C6	126.9 (7) 102.2 (9) 121.3 (11) 121.8 (11) 116.8 (10) 122.7 (10) 110.4 (10) 126.9 (10) 108.3 (10) 123.1 (13)
C2—N3—C4 C2—N3—C3 C4—N3—C3	119.7 (9) 119.7 (10) 120 4 (10)	N7—C5—C6 O6—C6—C5 O6—C6—N1	128.6 (12) 129.7 (19) 119.9 (14)
C8—N7—C5 C8—N7—Au	103.9 (10) 129.1 (8)	C5—C6—N1 N7—C8—N9	110.3 (10) 115.2 (11)

Data collection: MSC/AFC Diffractometer Control Software (Molecular Structure Corporation, 1993a). Cell refinement: MSC/AFC Diffractometer Control Software. Data reduction: TEXSAN PROCESS (Molecular Structure Corporation, 1993b). Program(s) used to solve structure: SHELXS86 (Sheldrick, 1985). Program(s) used to refine structure: SHELXL93 (Sheldrick, 1993). Molecular graphics: SHELXTL-Plus (Sheldrick, 1991). Software used to prepare material for publication: SHELXL93.

Lists of structure factors, anisotropic displacement parameters, Hatom coordinates and complete geometry have been deposited with the IUCr (Reference: MU1194). Copies may be obtained through The Managing Editor, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England.

References

Blank, C. E. & Dabrowiak, J. C. (1984). J. Inorg. Biochem. 21, 21–29. Bondi, A. (1964). J. Phys. Chem. 68, 441–451.

Clegg, W. (1978). Acta Cryst. B34, 278-281.

- Colacio, E., Romerosa, A., Ruiz, J., Román, P., Gutiérrez-Zorrilla, J. M. & Martínez-Ripoll, M. (1989). J. Chem. Soc. Dalton Trans. pp. 2323-2329.
- Cookson, P. D. & Tiekink, E. R. T. (1993). Acta Cryst. C49, 1603-1603.
- Cozak, D., Mardhy, A., Olivier, M. J. & Beauchamp, A. (1986). Inorg. Chem. 25, 2600–2606.
- Flack, H. D. (1983). Acta Cryst. A39, 876-881.
- Jaw, H.-R. C., Savas, M. M., Rogers, R. D. & Mason, W. R. (1989). Inorg. Chem. 28, 1028–1037.
- King, C., Khan, M. N. I., Staples, R. J. & Fackler, J. P. Jr (1992). Inorg. Chem. 31, 3236–3238.
- Mirabelli, C. K., Johnson, R. K., Sung, C. M., Faucette, L., Muirhead, K., & Crooke, S. T. (1985). *Cancer Res.* **45**, 32–39.
- Molecular Structure Corporation (1993a). MSC/AFC Diffractometer Control Software. MSC, 3200 Research Forest Drive, The Woodlands, TX 77381, USA.
- Molecular Structure Corporation (1993b). TEXSAN. Single Crystal Structure Analysis Software. MSC, 3200 Research Forest Drive, The Woodlands, TX 77381, USA.
- North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351-359.
- Rosopulos, Y., Nagel, U, & Beck, W. (1985). Chem. Ber. 118, 931-942.
- Sheldrick, G. M. (1985). SHELXS86. Program for the Solution of Crystal Structures. Univ. of Göttingen, Germany.
- Sheldrick, G. M. (1991). SHELXTL-Plus. Release 4.1. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
- Sheldrick, G. M. (1993). SHELXL93. Program for the Refinement of Crystal Structures. Univ. of Göttingen, Germany.

©1995 International Union of Crystallography Printed in Great Britain – all rights reserved

- Szalda, D. J., Kistenmacher, T. J. & Marzilli, L. G. (1976). J. Am. Chem. Soc. 98, 8371–8377.
 - Yan, W. W.-W., Lai, T.-F. & Che, C.-M. (1990). J. Chem. Soc. Dalton Trans. pp. 3747-3752.

Acta Cryst. (1995). C51, 2554-2559

3,5-Dimethoxycarbonyl-2,6-dimethyl-4-(2nitrosophenyl)pyridine and Dichlorobis[3,5dimethoxycarbonyl-2,6-dimethyl-4-(2-nitrophenyl)pyridine]copper(II)

KRISTIN R. ROWAN AND ELIZABETH M. HOLT

Department of Chemistry, Oklahoma State University, Stillwater, Oklahoma 74078, USA

(Received 16 December 1994; accepted 1 May 1995)

Abstract

Two decomposition products of the calcium channel blocker nifedipine {the title compounds dimethyl 2,6-dimethyl-4-(2-nitrosophenyl)pyridine-3,5-dicarboxylate, $C_{17}H_{16}N_2O_5$, and dichlorobis[dimethyl 2,6-dimethyl-4-(2-nitrophenyl)pyridine-3,5-dicarboxylate-*N*]copper(II), [CuCl₂($C_{17}H_{16}N_2O_6$)₂]}, have been found to exist in the solid state, with approximately perpendicular orientations of the pyridine and phenyl rings. Unlike in the parent compound, the ester groups are not coplanar with their pyridine ring, but the nitro and nitroso substituents are coplanar with their respective phenyl rings.

Comment

Nifedipine [3,5-dimethoxycarbonyl-2,6-dimethyl-4-(2nitrophenyl)-1,4-dihydropyridine], (I), is an important calcium-channel antagonist of the dihydropyridine type, known to interact with the α_1 moiety of L-type calcium channels, regulating excitation–contraction coupling of cardiovascular tissues, *i.e.* the smooth muscle of the veins and arteries. Compounds of this class are currently being used in the treatment of a variety of cardiovascular disorders such as angina and hypertension (Triggle, Langs & Janis, 1989; Hurwitz, Partridge & Leach, 1991).

Nifedipine, like most derivatives of the 1,4-dihydropyridine class, undergoes photodecomposition processes. This reaction has been reported to be extremely wavelength sensitive and two decomposition products have been identified by spectroscopic methods. Exposure to UV radiation appears to cause aromatization of the dihydropyridine ring and reduction of the nitro group to a nitroso moiety, *i.e.* forming compound (II). Daylight and air oxidation lead to reoxidation of the nitroso group to a nitro function, *i.e.* forming compound (IIa). The existence of these decomposition products has led to concern about shelf-life, packaging and potency (Núnez-Vergara, Sunkel & Squella, 1994; Sadana & Ghogare, 1991; Hayase, Itagaki, Ogawa, Akutsu, Inagaki & Abiko, 1994).

Calcium antagonistic activity of the 1,4-dihydropyridine family is influenced by (a) the presence of the 1,4-dihydropyridine moiety, (b) alkyl groups (preferably methyl) substituted at the 2 and 6 positions, (c) ester groups at the 3 and 5 positions, (d) an aryl (phenyl) substituent at position 4 and (e) N—H at position 1. Oxidation of the 1,4-hydropyridine ring to pyridine is reported to diminish activity significantly (Triggle, Langs & Janis, 1989; Morad, Goldmann & Trentham, 1983; Loev, Goodman, Snader, Tedeschi & Macko, 1974; Janis, Silver & Triggle, 1987).

The three-dimensional conformation of these compounds is also important. In all of the 1,4dihydropyridine-ring-containing nifedipine derivatives examined by single-crystal X-ray diffraction (Triggle, Langs & Janis, 1989; Mehdi & Ravikumar, 1992), the 1,4-dihydropyridine ring exhibits a boat conformation with the N atom at the prow and the phenyl ring in an axial position at the bow. Structure-activity studies have demonstrated that flattening of the boat conformation correlates with increased activity, presumably due to the concurrent change in position of the phenyl ring. When the plane of the phenyl ring is perpendicular to the plane of the base of the boat, *i.e.* the plane formed by atoms C2, C3, C5 and C6 of the non-aromatic ring,

Fig. 1. Projection views of (a) molecule A and (b) molecule B of compound (II) (atom numbers for molecule B are the same as those of A but with the number 9 prefixed to each), and (c) the 2,6-dimethyl-3,5-dimethoxycarbonyl-4-(2-nitrophenyl)pyridine ligand of compound (III). Ellipsoids are shown at the 50% probability level.

activity increases (Loev, Goodman, Snader, Tedeschi & Macko, 1974; Triggle, Schefter & Triggle, 1980).

The majority of the more than 30 crystal structures of members of the nifedipine family show the ester groups to have the C=O group coplanar with the C=C bond of the 1,4-dihydropyridine ring (Triggle, Langs & Janis, 1989).

In nifedipine itself, the carbonyl of the ester group attached to C3 is antiperiplanar (ap) to the C2=C3 bond, whereas the carbonyl of the ester group at C5 is synplanar (sp) to the C5=C6 bond. Thus, the carbonyl groups of the ester functions do not point in the same direction. It is thought that only the *sp* conformation of the ester group permits hydrogen bonding to the carbonyl O atom as an acceptor group (Triggle, Schefter & Triggle, 1980; Langs, Strong & Triggle, 1990).

The decomposition products, which lack the hydrogen-bonding N—H donor group, are reported to lose their activity (Morad, Goldmann & Trentam, 1983). However, various studies of nifedipine derivatives which have an aromatic pyridine ring in place of the 1,4dihydropyridine ring do not show a complete loss of activity (Loev, Goodman, Snader, Tedeschi & Macko, 1974). Thus, it was of interest to examine the solidstate structures of the two decomposition products of nifedipine, (II) and (II*a*), to observe the change in conformation of the two-ring system and the change in position of the ester groups at positions 3 and 5 upon decomposition.

Compound (II) was isolated from solvent as greenyellow needles. Compound (III) was produced as a vellow oil which failed to crystallize and was isolated as a coordination complex of copper(II) (Fig. 2). Both decomposition products show the plane of the aryl ring to be approximately perpendicular to the plane of the pyridine ring. This is best described by analysis of the torsion angles about C4-C7 [C3-C4-C7—C8 81.6 (8) and 74.4 (9)° in molecules A and B, respectively, of compound (II), 90.2 (10)° in compound (III)]. In the parent compound, the related angle between the plane of the aryl ring and the plane of the base of the boat of the 1,4-dihydropyridine ring is less than 90°. Perpendicularity of the phenyl ring to the plane of the base of the boat will result in a C5-C4-C7-C8 torsion angle of 60°. The observed angle is 49.2°. With aromatization of the pyridine ring, the boat is completely flattened and atom C4 is sp^2 hybridized, causing the aromatic ring to extend further out into space.

The nitroso and nitro substituents at the 2 position of the aryl ring of compounds (II) and (III), respectively, are coplanar with the aromatic phenyl rings to which they are respectively attached [deviations 0.018 in (II), 0.014 Å in (III)]. In nifedipine, the nitro group is rotated away from coplanarity with the phenyl ring by approximately 37° (Triggle, Schefter & Triggle, 1980).

The spatial arrangements of the methoxycarbonyl groups at C3 and C5 are also different. Both (II) and

Fig. 2. Projection view of compound (III) with ellipsoids shown at the 50% probability level.

(III) have methoxycarbonyl groups in non-coplanar positions with respect to the pyridine ring, presumably in order to minimize the steric interactions with the phenyl substituent. In the two molecules in the asymmetric unit of compound (II), one has a C2—C3—C3'— O3' angle of -126.3 (8)° and a C6—C5—C5'—O5' angle of 65.1 (10)°, whereas the corresponding angles for the second molecule are -98.4 (9) and 40.2 (12)°. Both show carbonyl groups projecting in the same spatial direction relative to the plane of the pyridine ring. Compound (III) has a C2—C3—C3'—O3' torsion angle of -101.2 (11)° and a C6—C5—C5'—O5' angle of -54.2 (13)°. However, the carbonyl groups point in opposite directions with respect to the plane of the pyridine ring.

Thus, the decomposition products show the appropriate conformation of the two rings that is associated with activity (*i.e.* approximately perpendicular), but decomposition has caused pronounced changes in the orientation of the ester groups and the nitroso or nitro functional groups.

Aromatization of the 1,4-dihydropyridine ring results in the loss of the H atom from N1, removing any possibility of a hydrogen-bonding interaction with the receptor site. However, the rotation of the ester groups at positions 3 and 5 of (II) and (III) out of conjugation with the π bonds of the ring may permit increased hydrogen bonding to these groups.

Experimental

Compound (II) was prepared by slow evaporation of a solution of 20 mg of nifedipine in 10 ml of ethanol in ultraviolet light. Light-green needle-like crystals were formed. Compound (III) was prepared by slow evaporation of a solution of 20 mg of nifedipine in 10 ml of ethanol with copper(II) chloride (9.8 mg, 1:1) in an open container in the presence of fluorescent light. Dark purple crystals were produced after several weeks.

Compound (II)

Crystal data

$C_{17}H_{16}N_2O_5$	Mo $K\alpha$ radiation
$M_r = 328.3$	$\lambda = 0.71073 \text{ Å}$

KRISTIN R. ROWAN AND ELIZABETH M. HOLT

Monoclin	ic		Cell pa	arameters fro	om 46	C93'	-0.0625 (4)	0.5461 (1	12) -0.1138 (3)	0.062 (2)
$P2_1/c$			refle	ections		C93'' †	-0.1711(14)	0.720 (4)	-0.1023(9)	0.096 (10)
a = 18.17	'1 (4) Å		$\theta = 4.3$	38–12.37°		093/	-0.1492(19) -0.0845(2)	0.790 (3)	-0.1132(12)	0.142(13) 0.089(2)
b = 7.157	(1) Å		$\mu = 0.0$	096 mm^{-1}		093''t	-0.090(3)	0.659 (8)	-0.0784(15)	0.124 (14)
c = 26.16	5 (5) Å		T = 29	98 K		O93X†	-0.100 (3)	0.6788 (6	5) -0.0900 (14)	0.090 (10)
$\beta = 90.20$	$(3)^{\circ}$		Needle	2		C94	0.0739 (4)	0.5358 (10) -0.1080 (2)	0.053 (2)
V = 3402	6(13) Å ³		0.4 ×	$0.2 \times 0.1 \mathrm{m}$	m	C95	0.1370 (4)	0.4472 (1	10) -0.0896(2)	0.059 (2)
7 - 9	.0(15) A		Green	012 / 011 II		C95'	0.2129(5) 0.2871(4)	0.4977((4) = -0.1100(3) (2) = -0.1359(2)	0.076(3)
L = 0	$2 M_{\alpha} m^{-3}$		oreen			095'	0.2583(3)	0.3847 ((0) = 0.1222(2)	0.138(4) 0.126(3)
$D_{\chi} = 1.20$	52 Mg III					095''	0.2208 (3)	0.6802 (9	-0.1111(2)	0.089 (2)
D						C96	0.1295 (4)	0.2991 (11) -0.0556 (2)	0.068(2).
Data colle	ection					C96′	0.1932 (4)	0.1850 (12) -0.0359 (2)	0.133 (4)
Syntex P4	4 four-circle		$R_{\rm int} = 0$	0.084		C97	0.0749 (3)	0.6917 (1	10) -0.1452(2)	0.050 (2)
diffract	ometer		$\theta_{\rm max} =$	25°		C98	0.0605(4)	0.8694 ((11) -0.1304(3) (0) -0.1652(3)	0.074(2)
$\theta/2\theta$ scan	s		h = -1	$1 \rightarrow 19$		C910	0.0372(4) 0.0735(3)	0.9826 ((0) = 0.1052(3) (0) = 0.2163(3)	0.080(2) 0.068(2)
Absorptio	on correction	•	k = -1	$1 \rightarrow 8$		C911	0.0855 (3)	0.8038 (10) -0.2323(2)	0.061 (2)
none		•	l = -3	$31 \rightarrow 31$		C912	0.0881 (3)	0.6577 (10) -0.1976 (2)	0.051 (2)
7522 mea	sured reflect	ione	3 stand	dard reflectio	me	N92	0.1012 (3)	0.4688 (9	9) -0.2111 (2)	0.070 (2)
5831 inde	pandant raf	actions	J stant	stored every	07	091	0.1145 (3)	0.4430 (1	7) $-0.2563(2)$	0.098 (2)
1229 abo	ependent ien		mon	Acations	91					
1528 0050	erved reflect	ions	re	nections	2 701	† Mole	cule A has 50	50 disorder	in the position of the C	atom of the
[I > 2c]	$\mathcal{T}(I)$		inter	nsity decay:	3.1%	nitroso g	roup (OlA and	d OIB). Mol	ecule B has $50/50$ dis	sorder of the
						methoxy	O atom and the	ne CH ₃ group	o of one ester group (0	093'', C93''
Refinemer	nt					and O932	K, C93X).			
Refineme	nt on F^2		(Δ/σ)	max = -1.27	2					
R(F) = 0.	063		Δo_{max}	$= 0.18 \text{ e} \text{ Å}^{-1}$	- 3		0 0 1			
$wR(F^2) =$	0.158		$\Delta \rho_{\rm min}$	$= -0.18 \text{ e}^{1/2}$	Å - 3	Table	2. Selected	geometric	r parameters (A, °) for (11)
S = 0.694	0.150		Extinct	tion was refi	ned but	N1-C6		1.326 (7)	N91-C96	1.358 (7)
5 = 0.074	otions		LATING	incignificant	hea bat	N1-C2		1.332 (7)	N91—C92	1.338 (7)
3/95 Telle			was	insignifican	l Factors	C2—C3		1.378 (7)	C92—C93	1.357 (7)
461 parar	neters		Atomic	c scattering	actors	C2—C2'		1.500 (7)	C92—C92'	1.500 (7)
H-atom p	arameters no	ot	from	1 Internation	al Tables	$C_{3} - C_{4}$		1.408 (7)	C93 - C93	1.397 (7)
refined	2		for (Crystallogra	phy (1992,	(3'-03')		1.197 (7)	C93' - 093'	1.301 (8)
$w = 1/[\sigma^2]$	$F(F_o^2) + (0.02)$	$268P)^{2}$	Vol.	C, Tables 4	.2.6.8 and	C3'-O3'	,	1.315 (7)	C93'-093''	1.33 (5)
where	$P = (F_o^2 + 2)$	$2F_{c}^{2})/3$	6.1.1	1.4)		O3''—C3		1.446 (6)	C93'—O93X	1.33 (5)
						C4—C5		1.406 (7)	C93''—O93''	1.65 (5)
T 1 1	r .:		.ر			C4—C7		1.495 (8)	C93X—O93X	1.36(5)
Table 1.	Fractional	atomic	cooraii	nates and e	equivalent	C5-C6		1.394 (7)	C94—C95	1.394 (7)
isot	ropic displa	icement p	parame	ters (A²) fo	r (II)	$C_{3} - C_{3}$		1.300(7)	C94-C97 C95-C96	1 391 (8)
			¬	_		C5'-05'	'	1.307 (7)	C95—C95'	1.525 (9)
	U_{eq}	= (1/3)と _i 2	$\Box_j U_{ij} a_i^* a_j$	$\int_{j} \mathbf{a}_{i} \cdot \mathbf{a}_{j}$		C5''—O5	· · ·	1.453 (6)	C95'—O95'	1.199 (8)
	x	y		Z	U_{eq}	C6—C6′		1.503 (7)	C95'—O95''	1.315 (8)
N1	0.2852 (3)	-0.1787 (8)	0.0848 (2)	0.061 (2)	C7—C8		1.343 (7)	C95''	1.445 (7)
C2	0.3300 (3)	-0.0918 (10)	0.0523 (2)	0.052 (2)	C^{\prime}		1.407 (7)	C90-C90	1.300 (8)
C2'	0.3326 (3)	-0.1806 (9) • 0)	0.0005 (2)	0.083 (2)	C9-C10		1.375(7)	C97 - C912	1.413 (7)
C_3	0.3/26(3) 0.4241(4)	0.0585 (10)	0.0008 (2)	0.053(2)	C10-C1	1	1.365 (8)	C98—C99	1.376 (8)
03'	0.4241(4) 0.4883(2)	0.1343 (8)	0.0290(3) 0.03731(15)	0.000(2) 0.088(2)	C11—C12	2	1.370 (7)	C99—C910	1.381 (7)
03''	0.3876 (2)	0.2127 (3	8) —	0.0108 (2)	0.096 (2)	C12—N2		1.429 (8)	C910—C911	1.364 (8)
C3''	0.4316 (4)	0.2938 (í) –	0.0510 (2)	0.123 (3)	N2—O1B		1.16 (3)	C911—C912	1.386 (7)
C4	0.3715 (3)	0.1225 (9)	0.1177 (2)	0.055 (2)	N2-01A		1.25 (3)	C912—N92 N02—O01	1.418(7)
C5	0.3225 (3)	0.0309 (9	9) 11)	0.1508 (2)	0.048 (2)	C6 N1	C 2	110 3 (6)	C92 N91 C96	1174(6)
C5	0.3181(3) 0.2796(3)	0.0904 (11) Q)	0.2059(3) 0.2607(2)	0.034 (2)	N1-C2-	-02	122.2 (6)	N91-C92-C93	122.9 (6)
05'	0.3384 (3)	-0.0012 (8)	0.2409 (2)	0.115 (2)	NI-C2-	-C2'	113.6 (6)	N91—C92—C92'	113.7 (6)
05''	0.2867 (2)	0.2539 (7)	0.2100 (2)	0.0704 (14)	C3—C2—	-C2′	124.1 (7)	С93—С92—С92′	123.3 (7)
C6	0.2818 (3)	-0.1207 (10)	0.1329 (3)	0.055 (2)	C2—C3—	-C4	120.3 (6)	C92—C93—C94	121.0 (6)
C6′	0.2298 (3)	-0.2199 (9) 10)	0.1683 (2)	0.091 (2)	C2-C3-	-C3'	121.6 (6)	C92—C93—C93'	120.8 (6)
C7	0.4183 (3)	0.2808 (10)	0.1360 (2)	0.047 (2)	03' 03'	-cs	118.0(0)	C94-C93-C93 C031_C031_C031	118.0(0)
	0.3990 (3)	0.4600 (10)	0.1288(2)	0.058(2)	03 - 03 03' - 03'	 	123.2 (7)	093' - 093' - 093'	123.7 (18)
C10	0.5028 (4)	0,5665 (10)	0.1773 (3)	0.070 (2)	03''-C3	v'—C3	110.4 (6)	O93''-C93'-C93	104.5 (18)
C11	0.5239 (3)	0.3854 (10)	0.1846 (2)	0.063 (2)	C3′—O3′	''—C3''	115.6 (5)	C93'—O93''—C93''	103.5 (24)
C12	0.4830 (3)	0.2433 (10)	0.1639 (2)	0.054 (2)	C3—C4—	-C5	116.2 (6)	C95—C94—C93	116.8 (6)
N2	0.5020 (3)	0.0504 (9)	0.1690 (2)	0.081 (2)	C3-C4-	-C7	122.6 (6)	C95—C94—C97	123.9 (6)
01 <i>A</i> †	0.5649 (17)	0.019 (3))	0.1865 (14)	0.115 (11)	CS-C4-	-u/ -C/	121.2 (6)	C95-C94-C97 C96-C95-C94	119.3 (D) 119.1 (G)
N91	0.0632 (4)	0.020 (4)	, 8) —	0.1929(13)	0.150(14)	C6	-C5'	120.8 (6)	C96—C95—C95'	119.6 (7)
	J	0.4077	- /		()					- • •

C92

C92′

C93

0.0034 (4)

0.0064 (3)

-0.0674 (3)

0.3288 (10)

0.2501 (9)

0.4696 (10)

-0.0554 (2)

-0.0354(2)-0.0901(2)

0.156 (14) 0.071 (2) 0.060 (2)

0.086 (2)

0.052 (2)

C4---C5---C5' O5'---C5'---O5'' O5'---C5'---C5

119.5 (6) 124.5 (7) 124.5 (7)

C94—C95—C95' O95'—C95'—O95'' O95'—C95'—C95

121.0 (6)

126.1 (9) 123.9 (9)

$C_{17}H_{16}N_2O_5$ AND $[CuCl_2(C_{17}H_{16}N_2O_6)_2]$

05''-C5'-C5	110.9 (6)	O95''-C95'-C95	110.0 (8)	C2′	0.0997 (7)	-0.193 (1) -0.1338 (5)	0.053 (3)
C5'-O5''-C5''	118.1 (5)	C95'	114.8 (7)	C3	-0.0540(6)	0.018 (1) $-0.2384(4)$	0.039 (3)
N1 - C6 - C6'	122.4 (0)	N91	122.8 (0)	C5	-0.0008 (0)	0.100 (-0.2013(3) 1) $-0.2084(4)$	0.043(3)
C5-C6-C6'	119.6 (6)	C95-C96-C96'	123.7 (7)	C5'	0.0879 (8)	0.436 (-0.2308(6)	0.057(3)
C8-C7-C12	118.2 (6)	C98—C97—C912	118.2 (6)	C5''	0.2004 (10)	0.570 (-0.3108(8)	0.107 (6)
C8-C7-C4	122.1 (6)	С98С97С94	121.1 (6)	O5′	0.0654 (7)	0.572 (1) -0.2048 (5)	0.061 (4)
C12-C7-C4	119.7 (6)	С912—С97—С94	120.7 (6)	05''	0.1555 (5)	0.417 (1) -0.2823 (4)	0.072 (3)
C7-C8-C9	121.3 (6)	C97C98C99	121.1 (6)	C6	0.0418 (6)	0.219 (1) -0.1328 (5)	0.042 (3)
C8-C9-C10	120.5 (7)	C98-C99-C910	121.2 (7)	C6 ⁷	0.0921 (7)	0.326 ($\begin{array}{c} 1) & -0.0705(5) \\ 0.2422(5) \end{array}$	0.060 (4)
C_{10} C	119.1(7)		118.5 (0)	C7 C8	-0.0173(7) -0.0988(8)	0.219(-0.3432(3) 1) $-0.3643(6)$	0.048(3) 0.068(4)
C11 - C12 - C7	121.0 (6)	C911-C912-N92	124.1 (6)	C9	-0.1165(10)	0.371 (-0.4385(8)	0.087 (6)
C11-C12-N2	123.3 (6)	C911-C912-C97	120.0 (6)	C10	-0.0491 (13)	0.309 (-0.4918(7)	0.099 (6)
C7-C12-N2	115.7 (6)	N92—C912—C97	115.9 (6)	C11	0.0317 (11)	0.210 (1) -0.4743 (6)	0.081 (5)
O1A—N2—C12	115.5 (12)	O91-N92-C912	114.8 (6)	C12	0.0418 (8)	0.167 (1) -0.3991 (5)	0.060 (4)
				N2	0.1249 (17)	0.064 (-0.3867(10)) 0.130 (9)
Compound (III)					0.1451 (13)	0.016 (2) -0.3364 (12) -0.4326 (0)	0.1/8(9)
Crustal data				03''	-0.2068 (5)	-0.0587	(9) = 0.2975(4)	0.132(7)
Ci ysiai aaia				03'	-0.0697(6)	-0.191 ((2) -0.3368(4)	0.088 (3)
$[CuCl_2(C_{17}H_{16}N_2O_6)]$)2]	Mo $K\alpha$ radiation		C3′	-0.1103 (8)	-0.094 (1) -0.2959 (5)	0.050 (4)
$M_r = 823.1$		$\lambda = 0.71073 \text{ Å}$		C3''	-0.2676 (8)	-0.15 (1) -0.3562 (7)	0.103 (6)
Monoclinic		Cell parameters fro	om 27					
$P2_1/n$		reflections		—			•	
a = 13184(3) Å		$\theta = 5.37 - 8.56^{\circ}$		Table	e 4. Selected	geometri	c parameters (A	$, \circ)$ for (III)
h = 7.768 (2) Å		$\mu = 0.817 \text{ mm}^{-1}$		Cu1—Cl	1	2.232 (2)	C5''05''	1.43(1)
v = 17.700 (2) R		T = 208 K		Cul-N	1	2.041 (7)	C6—C6′	1.52(1)
c = 17.750 (4) A		Chunk		N1C2		1.34(1)	C7—C8	1.41(1)
p = 91.50(3)				N1-C6	,	1.36(1)	C7—C12	1.34(1)
V = 1815.8 (/) A ³		0.3 X 0.2 X 0.2 II		$C_2 = C_2$		1.52(1) 1.40(1)	$C_8 - C_{10}$	1.37(1) 1.40(2)
Z = 2		Purple		$C_2 = C_3$ $C_3 = C_4$		1.40(1)		1.40(2)
$D_x = 1.506 \text{ Mg m}^{-3}$,			C3-C3'	,	1.52 (1)	C11-C12	1.38 (1)
				C4—C5		1.38(1)	C12—N2	1.37 (2)
Data collection				C4—C7		1.51(1)	N201	0.99 (2)
Siemens P4 four-cir	cle	$R_{int} = 0.070$		C5C5'	•	1.49(1)	N2_02	1.20 (2)
diffractometer		$\theta_{\rm max} = 30.0^{\circ}$		C5-C6	-1	1.40(1)	O3''C3'	1.30(1)
A/2A scans		$h = -1 \rightarrow 15$		C5' = 02	5''	1.20(1)	$03^{-1} - 03^{-1}$	1.48(1)
Absorption correction		k = 1 + 15 $k = 1 + 0$		CJ	,	1.50(1)	03 - C3	1.19(1)
Ausorption concerne	haldmialr	$k = -1 \rightarrow j$		CIICu		90.7 (2)	N1C6C6'	116.3 (7)
ψ scan (<i>AEMF</i> ; S	sneidrick,	$l = -21 \rightarrow 21$		Cul-N	1	89.3 (2)	$C_{4} = C_{7} = C_{8}$	122.2 (8)
1993)	0.70	3 standard reflection	ons	C2-N1-		119.5 (7)	$C_{4} = C_{7} = C_{12}^{3}$	126.2 (9)
$I_{\min} = 0./2, I_{\max}$	= 0.78	monitored every	9/	N1	-C2'	116.7 (7)	C8-C7-C12	116.0 (9)
4231 measured refle	ctions	reflections		N1C2-	C3	120.8 (8)	С7—С8—С9	120.8 (10)
3211 independent re	flections	intensity decay:	3%	C2'C2	2—C3	122.4 (8)	C8—C9—C10	117.9 (12)
1262 observed reflect	ctions			C2C3-	C4	120.2 (8)	C9-C10-C11	123.6 (12)
$[F > 10.0\sigma(F)]$				C2C3-	-0'	120.2 (8)	$C_{10} - C_{11} - C_{12}$	114.8 (12)
				C4-C3-C4		119.0(7)	C_{7} C_{12} C_{12} C_{11} C_{12} N_{12}	120.8 (11)
Refinement				C3C4-	—C 7	118.8 (8)	C11-C12-N2	110.9 (12)
Definement on F		$\Lambda_{0} = 0.52 \circ \Lambda_{0}$	-3	C5—C4-	C7	122.0 (8)	C12—N2—O1	123.7 (21)
		$\Delta p_{\text{max}} = 0.32 \text{ e A}$	å −3	C4—C5-	C5'	120.3 (8)	C12—N2—O2	128.0 (17)
K = 0.038		$\Delta \rho_{\rm min} = -0.70 \ e$		C4—C5-		118.9 (8)	01—N2—O2	108.1 (22)
$w \kappa = 0.0/1$		Extinction was ref	inea but	CSCS		120.7 (8)	N2-01-02	39.9 (15)
S = 1./0		was insignifican	t 2	C5C5'	 '5''	124.2 (10)	(3'-03''-03'')	115 3 (8)
3211 reflections		Atomic scattering	factors	05′—C5	5'-05''	123.5 (11)	C3–C3′–O3′′	110.9 (8)
242 parameters		from Internation	al Tables	C5'05	5′′—C5′′	116.9 (9)	C3—C3′—O3′	123.8 (9)
H-atom parameters	not	for Crystallogra	phy (1992,	N1C6-	C5	121.5 (8)	O3''-C3'-O3'	125.2 (9)
refined	-	Vol. C, Tables 4	.2.6.8 and		Syı	nmetry code	: (i) $-x, -y, -z$.	
$w = 1/[\sigma^2(F_o) + 0.0$	$008F_o^2$]	6.1.1.4)				0.40		
$(\Delta/\sigma)_{\rm max} = 0.014$				A scar	n width of	0.6° abov	e $K\alpha_1$ and 0.6°	below $K\alpha_2$.

A scan width of 0.6° above $K\alpha_1$ and 0.6° below $K\alpha_2$, a variable scan rate and background counts on each side of every scan were used. Refinement was by full-matrix least-squares methods. Compound (II) crystallizes with two molecules per asymmetric unit, each of which displays a disordered substituent.

For both compounds, data collection: XSCANS (Siemens, 1991); cell refinement: XSCANS; data reduction: XSCANS; program(s) used to solve structures: SHELXS86 (Sheldrick, 1990); program(s) used to refine structures: SHELXL93 (Sheldrick, 1995); molecular graphics: SHELXS86.

Table 3. Fractional atomic coordinates and equivalent isotropic displacement parameters ($Å^2$) for (III)

	$U_{ m eq}$	$= (1/3) \sum_i \sum_j U_i$	$_{j}a_{i}^{*}a_{j}^{*}\mathbf{a}_{i}.\mathbf{a}_{j}.$	
	x	у	Z	U_{eq}
Cul	0	0	0	0.041(1)
C11	-0.1450(2)	0.1416 (3)	0.0165(1)	0.066(1)
N1	-0.0012(4)	0.069(1)	-0.1111 (4)	0.039 (2)
C2	-0.0505(6)	-0.029(1)	-0.1624(5)	0.040 (3)

2558

Lists of structure factors, anisotropic displacement parameters, Hatom coordinates and complete geometry have been deposited with the IUCr (Reference: CR1185). Copies may be obtained through The Managing Editor, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England.

References

- Hayase, N., Itagaki, Y., Ogawa, S., Akutsu, S., Inagaki, S. & Abiko, Y. (1994). J. Pharm. Sci. 83, 532-538.
- Hurwitz, L., Partridge, L. D. & Leach, J. K. (1991). Calcium Channels: Their Properties, Functions, Regulation and Clinical Relevance. Boca Raton, Florida, USA: CRC Press.
- Janis, R. A., Silver, P. J. & Triggle, D. J. (1987). Adv. Drug Res. 16, 309-591.
- Langs, D. A., Strong, P. D. & Triggle, D. J. (1990). J. Comput.-Aided Mol. Des. 4, 215-230.
- Loev, B., Goodman, M. M., Snader, K. M., Tedeschi, R. & Macko, E. (1974). J. Med. Chem. 17, 956–965.
- Mehdi, S. & Ravikumar, K. (1992). Acta Cryst. C48, 1627-1630.
- Morad, M., Goldmann, Y. E. & Trentham, D. R. (1983). Nature (London), 304, 635-638.
- Núnez-Vergara, L. J., Sunkel, C. & Squella, J. A. (1994). J. Pharm. Sci. 83, 502–507.
- Triggle, A. M., Schefter, E. & Triggle, D. J. (1980). J. Med. Chem. 23, 1442-1445.
- Triggle, D. J., Langs, D. A. & Janis, R. A. (1989). Med. Res. Rev. 9, 123–180.
- Sadana, G. S. & Ghogare, A. B. (1991). J. Indian Chem. Soc. 68, 237-239.
- Siemens (1991). XSCANS Users Manual. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
- Sheldrick, G. M. (1990). Acta Cryst. A46, 467-473.
- Sheldrick, G. M. (1993). SHELXL93. Program for the Refinement of Crystal Structures. Univ. of Göttingen, Germany.

Acta Cryst. (1995). C51, 2559-2561

[4-Chloro-3-(2-nitrophenylthio)butyl]triphenylstannane

JOHN H. AUPERS

Rose Cottage, Middle Assendon, Henley-on-Thames, Oxfordshire RG9 6AU, England

JAMES L. WARDELL

Department of Chemistry, University of Aberdeen, Meston Walk, Old Aberdeen AB9 2UE, Scotland

(Received 30 March 1995; accepted 19 June 1995)

Abstract

The Sn atom in $[Sn(C_6H_5)_3(C_{10}H_{11}CINO_2S)]$ has slightly distorted tetrahedral geometry; a weak intramolecular S···O interaction exists as shown by the S···O distance of 2.610(5) Å and the C—S···O angle of 177.5 (3)°.

©1995 International Union of Crystallography Frinted in Great Britain – all rights reserved

Comment

The crystal structure determination of the addition product of $Ph_3SnCH_2CH_2CH_2CH_2CH_2$ and $2-O_2NC_6H_4SC1$ reveals it to be $Ph_3SnCH_2CH_2CH(SC_6H_4NO_2-2)CH_2CI$, (I), the anti-Markownikov adduct. This corrects an earlier assignment of the structure, based on the ¹H NMR spectrum, as $Ph_3SnCH_2CH_2CH(C1)CH_2SC_6H_4NO_2-2$ (Wigzell & Wardell, 1982). The geometry about the Sn atom in (I) is slightly distorted tetrahedral, with C—Sn—C valence angles ranging from 107.2 (1) to 115.5 (2)°. There are no short Sn···Cl or Sn···S contacts.

As found for a number of aryl and alkyl 2-nitroaryl sulfides, there is a weak intramolecular $S \cdots O$ interaction within (I) in the solid state; the nitro group is nearly coplanar with the atoms in the SC_6H_4 moiety: the O(10)—N(8)—C(7)—C(6) torsion angle is $3.6(7)^{\circ}$. The S(5)···O(10) separation in (I) is 2.610(5) Å, which is less than the sum of the van der Waals radii (3.25 Å). The C(4)—S(5)···O(10) angle is 177.5 (3)°. Crystallographically determined values of S···O distances and C-S···O angles in other 2-nitroaryl sulfides are: 2.656(1) Å and 171.7° in 2-O₂NC₆H₄SC₆H₄NO₂-2 (Kucsman, Kapovits, Parkanyi, Argay & Kalman, 1984); 2.715 (8) Å and 178.2 (3)° in Ph₃SnCHClCH₂SC₆H₃Me-4-NO₂-2 and 2.655 (5) Å and $172.7 (3)^{\circ}$ in Ph₃SnCH(SCN)CH₂SC₆H₄NO₂-2 (Howie, Wardell, Zanetti, Cox & Doidge-Harrison, 1992). As shown by electron diffraction, the $S \cdots O$ interactions in 2-nitroaryl sulfides can persist in the gas phase; for example, values of S···O and C-S···O in gaseous 2- $O_2NC_6H_4SMe$ were determined to be 2.769 (9) Å and

Fig. 1. View of a molecule of (I) indicating non-H-atom labelling. Displacement ellipsoids are at the 50% probability level and H atoms are drawn as small circles of arbitrary radii.